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The social cost of carbon (SCC) represents the economic cost 
associated with climate damage (or benefit) that results from 
the emission of an additional tonne of carbon dioxide (tCO2). 

One way to compute it is by taking the net present value of the 
difference between climate change damages along with a baseline 
climate change pathway and the same pathway with an additional 
incremental pulse release of CO2. The SCC provides an economic 
valuation of the marginal impacts of climate change. It has been 
estimated hundreds of times in the past three decades1 using a range 
of assumptions about uncertain parameters (such as social discount 
rate, economic growth and climate sensitivity). Recent estimates2–7 
of SCC range from approximately US$10 per tCO2 to as much as 
US$1,000 per tCO2. A recent report issued by the US National 
Academies highlighted the many challenges and opportunities 
associated with improving estimates of SCC8.

Among the state-of-the-art contemporary estimates of the SCC 
are those calculated by the US Environmental Protection Agency. 
The latest figures equal to US$12, US$42 and US$62 per tCO2  
emitted in 2020 for 5, 3 and 2.5% discount rates, respectively2. These 
estimates are used, among other purposes, to inform US environ-
mental rule-making. Various alternative approaches to estimate the 
SCC have been employed over the years, and include more sophis-
ticated treatments of time, risk and equity preferences9–14, as well 
as those that incorporate more recent representations of climate  
damage and feedback15–18. A recent expert elicitation of climate 
scientists and economists3 found a mean SCC of approximately 
US$150–200 per tCO2.

The global SCC (GSCC) captures the externality of CO2 emis-
sions, and is thus the right value to use from a global welfare per-
spective. Nonetheless, country-level contributions to the SCC are 
important for various reasons. Mapping domestic impacts can 
allow us to quantify non-cooperative behaviour, and thus better 
understand the determinants of international cooperation. The 
governance of climate agreements19,20 is a key issue for climate 
change. The nationally determined architecture of the Paris climate 
agreement—and its vulnerability to changing national interests—
is one important example. Country-level estimates can also allow 
us to better understand regional impacts, which are important for  
adaptation and compensation measures. Finally, a higher spatial 

resolution estimation of climate damage and benefits can impact 
estimates of net global climate damage21,22 and its sensitivity to  
climate and socio-economic drivers.

Existing studies agree on the significant gap between domestic 
and global values of the SCC, but provide limited agreement on 
the distribution of the SCC by region23. Due to limitations on the 
availability of country-level climate and economic inputs, no pre-
vious analysis has partitioned GSCC into country-level contribu-
tions from each individual nation. In this article, we draw upon 
recent developments in physical and economic climate science to 
estimate country-level SCC (CSCC) and aggregate SCC and quan-
tify the associated uncertainties. The CSCC captures the amount 
of marginal damage (or, if negative, the benefit) expected to occur 
in an individual country as a consequence of additional CO2 emis-
sion. Although marginal impacts do not capture all the information  
relevant to climate decision-making, the distribution of the CSCC 
provides useful insights into distributional impacts of climate 
change and national strategic incentives.

A modular framework
Following the recommendations of the recent report by the US 
National Academies, we executed our calculations of the social 
cost of carbon through a process with four distinct components8: 
a socio-economic module wherein the future evolution of the 
economy, which includes the projected emissions of CO2, is char-
acterized without the impact of climate change; a climate module 
wherein the earth system responds to emissions of CO2 and other 
anthropogenic forcings; a damages module, wherein the econo-
my’s response to changes in the Earth system are quantified; and 
a discounting module, wherein a time series of future damages is 
compressed into a single present value. In our analysis, we explored 
uncertainties associated with each module at the global and country 
level. We focused only on climate impacts, and did not carry out a 
fully fledged cost–benefit analysis, which would require modelling 
mitigation costs.

We developed a method to calculate SCC that is oriented towards 
partitioning and quantifying uncertainties. Although it follows the 
same module structure as the integrated assessment models that are 
conventionally used to calculate SCC, rather than build reduced-form  
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models of the climate or economy, we used country-level climate 
projections taken directly from gridded ensemble climate model 
simulation data as well as country-level economic damage rela-
tionships taken directly from empirical macroeconomic analyses. 
As climate and economic quantities are empirical in this analysis, 
these uncertainties are probabilistic in our output. Socio-economic 
and discounting uncertainties are assessed parametrically using five 
socio-economic scenarios and twelve discounting schemes.

Socio-economic module. For the socio-economic projections, we 
used the shared socio-economic pathway scenarios (SSPs)24. The 
SSPs provide five different storylines of the future (Supplementary 
Table 1). We used the GDP and population assumptions of the SSPs 
as well as subsequent work to estimate the emissions associated with 
each SSP without the climate mitigation policies25.

Climate module. We matched emission profiles of the SSPs to those 
of the representative concentration pathways (RCPs)26 modelled in 
the Fifth Coupled Model Intercomparison Project (CMIP5)27 to 
estimate baseline warming (Methods).To estimate the response of 
the climate system to a pulse release of CO2, we combined results 
from CMIP5 and a carbon cycle model intercomparison project28 
(Supplementary Tables 2 and 3). Carbon cycle uncertainty is rep-
resented by using the global-scale decay of atmospheric CO2 after 
a pulse release of CO2 into the present-day atmosphere. The cli-
mate system response uncertainty is calculated at the population-
weighted country level using gridded output from the CMIP5 
abrupt4× CO2 experiment in which atmospheric CO2 is instanta-
neously quadrupled from the preindustrial level. By convoluting the 
results from these experiments (as in Ricke and Caldeira29, but at 
the population-weighted country-mean level), we derived a range 
of country-specific transient warming responses to an incremental 
emission of CO2. To test the sensitivity of our results to the uncer-
tain feedbacks between economic growth and emissions, we per-
formed the calculations for RCPs 4.5, 6.0 and 8.5 for all the SSPs.

Damages module. We converted country-level temperature and  
precipitation changes into country-level damages using empirical  

macroeconomic relationships derived by Burke et al.30 and  
Dell et al.31. Their econometric approaches exploit interannual  
climate variability in historical observations to estimate the impact 
of climate on economic growth. Estimating the economic damages 
associated with a given level of warming is a notoriously challeng-
ing problem for which there is no perfect state-of-the-art solu-
tion8,32. Gross domestic product (GDP) is an informative, but highly 
imperfect measure of welfare33. Among its advantages, an empirical 
macroeconomic approach captures the interactions and feedbacks 
among sectors of the economy, captures the effects of climate on 
the economy that have been neglected or are difficult to parti-
tion and quantify, has a higher geographical resolution (country  
level) than existing alternatives, is empirically validated and has 
confidence intervals that allow uncertainty analysis, and is com-
pletely transparent and replicable. As results are sensitive to the 
econometric specifications, for example, whether lags are included 
to capture long-run effects, and countries are distinguished between 
rich and poor to account for different capabilities to adapt30, we 
compared all the existing empirical specifications (Methods and 
Supplementary Information).

Discounting module. We applied these damage functions to  
our country-level temperature pulse response, SSP and RCP  
projections, including associated climate and damage function 
uncertainty bounds (Methods and Supplementary Fig. 1) and  
then compressed the time series of output into country-level con-
tributions to the SCC (CSCCs) using discounting. Discounting 
assumptions are consistently one of the biggest determinants  
of differences between estimations of the SCC10,34. Although  
intuitive, the use of a fixed discounting rate is not appropriate, 
particularly when applied universally to countries with highly  
disparate growth rates and with significant economic losses due 
to climate change. We thus used growth-adjusted discounting  
determined by the Ramsey endogenous rule35, with a range of  
values for the elasticity of marginal utility (μ) and the pure rate  
of time preference (ρ), but we also report fixed discounting  
results to demonstrate the sensitivity of SCC calculations to dis-
counting methods.
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Fig. 1 | gSCC in 2020 under various assumptions and scenarios. Median estimates and 16.7% to 83.3% quantile bounds for GSCC under SSPs 1–5, and 
RCPs 4.5, 6.0 and 8.5. For each SSP, the darker colours indicate the SSP–RCP pairing with a superior consistency (Methods and Supplementary Table 4). 
The five specifications of damage function are four BHM models (short run (SR) and long run (LR) pooled and with the rich and poor (RP) distinction) and 
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utility substitution (μ) of 1.5. Supplementary Fig. 2 compares these results with fixed discounting (rate of 3%). Coloured bars represent the 66% CIs.
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global results
The GSCC is the sum of the CSCC values. We calculated CSCC for 
each set of scenario, parameter and model specification assump-
tions, and established an uncertainty range based on a bootstrap 
resampling method (Methods and Supplementary Information) 
and then aggregated to the global level. The median estimates of 
the GSCC (Fig. 1) are significantly higher than the Inter-agency 
Working Group estimates, primarily due to the higher damages 
associated with the empirical macroeconomic production func-
tion30, although similar SCC values have been estimated in the 
past using other methodologies11,18. Under the ‘middle-of-the-
road’ socio-economic scenario (SSP2) and its closest correspond-
ing climate scenario (RCP6.0), and with the central specification 
of Burke–Hsiang–Miguel (BHM) damage function (short run, no 
income differentiation) we estimated a median GSCC of US$417 
per tCO2 (ρ, 2%; μ, 1.5).

The choice of both socio-economic and climate scenario has an 
impact on the estimated GSCC (Fig. 1 and Supplementary Fig. 2).  
For a given RCP, scenarios with strong economic growth and 
reduced cross-country inequalities (SSP1 and SSP5) have a smaller 
GSCC than do scenarios with low productivity and persistent or 
even increasing global inequality (SSP3 and SSP4). For a given SSP, 
higher emission scenarios lead to a higher GSCC. When fixed time 
discounting is used (Supplementary Fig. 2), the results are signifi-
cantly different. In particular, the GSCC values are lower across the 
scenarios, and the ranking to SSPs and RCPs is often reversed. This 
highlights the importance of using the appropriate endogenous dis-
counting rules to capture the feedback of climate on the economy.

Figure 1 also shows the sensitivity to the impact function specifi-
cation. Under most socio-economic scenarios, the GSCC is signifi-
cantly higher and more uncertain when calculated with a long-run 
(lagged) damage model specification (BHM-LR). This somewhat 
counterintuitive result indicates that whether climate’s primary 
impact on the economy is through growth or level effects, the nega-
tive cumulative effect of climate change on long-term growth is sub-
stantial and robust. The GSCC tends to be similar in both pooled 
and rich/poor specifications of the damages model, with the excep-
tion of SSP3, in which the estimated GSCC is much higher in the 
rich/poor specifications. The DJO specification of the economic 
impact function31 yields significantly higher GSCC values.

The confidence intervals (CIs, 66%) illustrated in Fig. 1 empha-
size the large degree of empirical uncertainty that surrounds SCC 

estimates, even if scenario and structural uncertainties are disre-
garded. These stem from both the uncertainties of the climate sys-
tem response to CO2 (climate sensitivity) and uncertainties in the 
economic harm expected from climate change (damage function). 
The latter are especially significant for the long-run specifications, 
which, by construction, have larger confidence intervals.

Country-level results
These global estimates conceal substantial heterogeneity in CSCCs. 
Figure 2a shows the spatial distribution of CSCCs under a refer-
ence scenario (SSP2-RCP6, standard BHM specification). All the 
fixed discounting, alternative scenario, parameterization and speci-
fication results are available as part of the database included in the 
Supplementary Information.

India’s CSCC is the highest (US$86 per tCO2 (49–157); 21% of 
the GSCC (20–30%); CIs are given in parentheses), followed by the 
United States (US$48 per tCO2 (1–118); 11% of the GSCC (0–15%)) 
and Saudi Arabia (US$47 per tCO2 (27–86); 11% of the GSCC 
(11–16%) of the GSCC). Three countries follow at above US$20 per 
tCO2: Brazil (US$24 (14–41) per tCO2), China (US$24 (4–50) per 
tCO2) and the United Arab Emirates (US$24 (14–48) per tCO2). 
Northern Europe, Canada and the Former Soviet Union have nega-
tive CSCC values because their current temperatures are below the 
economic optimum. These results are among the most sensitive in 
the analysis, as under the BHM long-run and DJO damage model 
specifications all countries have positive CSCC. Under the refer-
ence case and other short-run model specifications, about 90% of 
the world population has a positive CSCC. Although the magni-
tude of CSCC varies considerably depending on the scenario and 
discount rate, the relative distribution is generally robust to these 
uncertainties. Damage function uncertainty is a larger contributor 
to the overall uncertainty, but at the country level, either climate  
or damages uncertainty may be larger. The alternative economic 
damage functions confirm the broad heterogeneity of CSCCs and 
relative country ranking (Fig. 2b and Supplementary Fig. 5).

Consistent with past work on the geography of climate dam-
ages5,30,36, we found that the international distribution of SCC is ineq-
uitable (Lorenz curves in Fig. 3). The magnitude of the inequality is 
sensitive to the model specification of the economic impact function. 
As discussed above and in the Supplementary Discussion, there is an 
unsettled debate as to whether empirical evidence points toward the 
influence of climate on the economy operating primarily via growth 
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or level effects, something that has been analysed without definitive 
conclusion in BHM and follow-up work37. Our results indicate that 
this uncertainty is consequential from a strategic perspective (that is, 
in determining the relative gains and losses to particular countries). 
In particular, with long-run and Dell–Jones–Olken (DJO) specifi-
cations, all countries have a positive CSCC. This results in higher 
(almost twice as much) global values of the SCC (as already observed 
in Fig. 1) and lower inequality with respect to the short-term speci-
fication. The distinction between income groups in the impact func-
tion (rich and poor countries) has smaller impacts, reducing GSCC 
and either leaving inequality unchanged (for the short-term specifi-
cation) or lowering it (for the long-term specification).

Figure 3b summarizes the inequality of the CSCC across all sce-
narios through Gini coefficients38,39, a synthetic measure of global 
heterogeneity. Under the short-run pooled BHM impact function 
(BHM-SR) specification, Gini values are slightly higher for SSP1 
and SSP5, and significantly lower for SSP3, which is also the socio-
economic scenario with the highest GSCC value. Damage model 
specification is the most important uncertainty factor to future 
outcomes, as under long-run economic impact models, inequal-
ity (Gini value) is considerably lower (where GSCCs are higher), 
whereas the rich/poor distinction plays a smaller role. The dis-
counting method also plays an important role—fixed discounting 
leads to significantly lower inequality (Gini coefficients) in the dis-
tribution of CSCC for most specifications.

Figure 4 highlights a mapping of the winners and losers from 
climate change among the G20 nations. Although the magnitude 
of the CSCC is subject to considerable uncertainty, the shares of 
the GSCC allocated among world powers remains relatively stable 
(Supplementary Figs. 7–9) in all short-run impact model specifica-
tions. Russia dominates all the other nations in gains from emis-
sions, whereas India is consistently dominated by all the other large 
economies with large losses. Other developing economies, such as 
Indonesia and Brazil, will accrue a significantly greater share of the 

GSCC than their current share of global emissions. The world’s big-
gest emitters (China and the United States) both stand to accrue a 
smaller share of the GSCC than their share of emissions, but are 
consistently dominated by the European Union, Canada, South 
Korea and—in the case of the United States—Japan.

The relative ranking of the SCC is highly consistent among most 
of the 276 scenario-impact-discounting uncertainty cases with the 
notable exception of the change in relative positions of major world 
powers that occurs under the long-run impact model specifications 
(Supplementary Figs. 7–9). Countries like Russia, Canada, Germany 
and France that have negative CSCC under the reference case switch 
to having among the highest positive CSCCs (Supplementary  
Fig. 9). After the short- and long-run differences, the largest shifts 
in country order relative to our reference case occur under the high-
emissions SSP5 scenario and in the transition between growth-
adjusted and fixed discounting (Supplementary Fig. 8).

Discussion
The discord between country-level shares in CO2 emissions and 
country-level shares in the SCC illustrates an important reason why 
significant challenges persist in reaching a common climate agree-
ment. If countries were to price their own carbon emissions at their 
own CSCC, approximately 5%, a small amount, of the global climate 
externality would be internalized. At the same time, our results con-
sistently show that the three highest-emitting countries (China, the 
United States and India) also have the among the highest country-
level economic impacts from a CO2 emission. These high-emitter 
CSCCs are on a par with carbon prices foreseen by detailed process 
integrated assessment models for climate stabilization scenarios 
(Supplementary Fig. 10). That is, internalizing the domestic SCC in 
some major emitters could result in emissions pathways for those 
countries that are consistent with the 1.5–2 °C temperature pathways. 
Fully internalizing the CO2 externality (that is, pricing carbon at the 
GSCC) would allow the Paris Agreement goal to be met, and beyond.
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Empirical macroeconomic damage functions have advantages 
and disadvantages compared to the approaches typically used to 
estimate the SCC in the past. The strengths include transparency, 
a strong empirical basis and the capacity to account for interac-
tions among all the sectors of the economy as well as for impacts 
that are difficult to isolate and quantify. However, a number of 
long-term effects of climate change are not captured by this type 
of relationship. We present a number of these excluded contribu-
tors in Supplementary Table 5, along with an indication of the 
likely sign of impacts on the CSCCs and the GSCC. For example, 
adjustment costs associated with adaptation are not accounted for 
in this model. Such costs could be high or, given that climate change 
is not a surprise, could be modest compared to the type of effects 
that are represented (and which are demonstrably large). Already 
in our analysis, impacts from climate change are large enough in 
some countries to lead to negative discount rates (Supplementary 
Fig. 11). Most of these additional contributors would be expected to 
increase the GSCC.

Globalization and the many avenues by which the fortunes 
of countries are linked mean that a high CSCC in one place may 
result in costs as the global climate changes even in places where 
the CSCC is nominally negative. For many countries, the effects 
of climate change may be felt more greatly through transbound-
ary effects, such as trade disruptions40, large-scale migration41 or 
liability exposure42 than through local climate damage. Although 
the CSCC in 2020 is negative for many rich northern countries, 
if the non-linear climate damages hold over time, the CSCC will 
become positive in most countries as the planet continues to warm. 
Furthermore, reducing greenhouse gas emissions can yield positive 
synergies on other environmental goals, such as improving air qual-
ity, which already have large welfare impacts43. These considerations 
suggest that country-level interests may be more closely aligned to 
global interests than indicated by contemporary country-level con-
tributions to the SCC. Furthermore, climate decision-making does 
not occur in a vacuum. Some countries, such as northern Europe 
and Canada, are leaders on climate policy despite potentially nega-
tive SCCs, whereas other countries with the highest CSCCs, like the 
United States and India, lag behind. Clearly, a host of other strategic 

and ethical considerations factor into the international relations of 
climate change mitigation.

In the recent US National Academy of Sciences report on SCC, 
the Working Group cites three essential characteristics for future 
SCC estimates: scientific basis, uncertainty characterization and 
transparency8. Our work includes improvements upon past esti-
mates of SCC on all three counts. Past estimates of SCC were based 
on reduced form climate modules and damage function calibration 
with limited empirical support44, whereas ours uses output from an 
ensemble of state-of-the-art coupled climate model simulations and 
two independently generated empirical damage functions. Past esti-
mates of the SCC have included limited uncertainty analysis focused 
mostly on a limited set of parameters such as the social discount 
rate, whereas our estimates include quantified uncertainty bounds 
for carbon cycle, climate, economic and demographic uncertain-
ties, and also provide disaggregation to the national level. In addi-
tion, past estimates of the SCC were often generated using opaque 
models and/or proprietary software. We provide all of our source 
code and the full output of our analysis for complete transparency 
(Supplementary Data).

The high values and profound inequalities highlighted by the 
country-level estimates of the social costs of carbon provide a fur-
ther warning of the perils of unilateral or fragmented climate action. 
We make no claim here regarding the utility of the CSCC in set-
ting climate policies. CO2 emissions are a global externality. Despite 
‘deep uncertainty’45 about discounting, socio-economic pathways 
and appropriate models of coupling between climate and economy, 
by all accounts the estimates of the GSCC made by the Interagency 
Working Group on Social Cost of Greenhouse Gases2 appear much 
too low. More research is needed to estimate the geographical diver-
sity of climate change impacts and to help devise policies that align 
domestic interests to the global good. However, large uncertainties 
in the precise magnitudes of the SCC, both national and global, can-
not overshadow the robust indication that some of the world’s larg-
est emitters also have the most to lose from their effects.
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Methods
We combine socio-economic, climate and impact data to estimate the CSCC, that 
is, the marginal damages from CO2 emissions, for each of the possible scenarios 
SSP–RCP using exogenous and endogenous discounting. Lemoine and Kapnick 
uses a similar methodology to calculate growth rate impacts36 rather than the 
CSCCs based on SSPs and damage estimates in Dell et al.31. The sequential process 
for calculating each CSCC is summarized in Supplementary Fig. 1. The GSCC is 
calculated by summing the CSCCs.

Supplementary Table 1 summarizes the underlying narratives, which cover 
different challenges to mitigation and adaptation. Several integrated assessment 
models have recently completed the implementation of the SSPs, computing for 
each of them future emissions as well as climate outcomes based on the medium 
complexity MAGICC6 model25. This allows us to map the SSPs onto four different 
CO2 emission pathways, the RCPs.

Data. The SSP database provided the socio-economic projections at country 
level for the five SSP narratives (https://tntcat.iiasa.ac.at/SspDb/dsd). The GDP 
projections were produced by the Organisation for Economic Co-operation and 
Development and the population projections were generated by the International 
Institute for Applied Systems Analysis. We computed annual GDP per capita 
growth rates for each country. The population-weighted average temperature 
increase at country level was calculated for three RCPs (RCP4.5, RCP6.0 and 
RCP8.5) using the gridded temperature projections provided by a total of 26 
global climate models that contribute to CMIP5 (Supplementary Table 2). GDP 
per capita growth rates and temperature increases cover the period 2020–2100. 
The population-weighted average temperature response over time at country 
level to the addition of 1 GtCO2 in the atmosphere was obtained by combining the 
results from the CMIP5 model’s outcomes and a total of 15 carbon cycle models 
from a carbon cycle modelling project29 (http://climatehomes.unibe.ch/~joos/
IRF_Intercomparison/). Additionally, baseline temperature at the country level  
was computed as the annual population-weighted average temperature increases 
from 1980 to 2010 from the Willmott and Matsuura gridded observational 
temperature data set46.

Climate projections. Population-weighted country-level temperature time series 
were calculated for all the RCP warming scenarios as well as for the abrupt4× 
CO2 experiment. Projections were bias corrected using a 1980-2010 observational 
baseline46. To remove the influence of interannual variability, for the purposes of 
the SCC calculations, RCP scenario time series were represented as a quadratic 
polynomial fit and the abrupt4× CO2 time series were represented as a three-
exponential fit. The carbon cycle response to a CO2 pulse was also represented with 
a three-exponential fit.

Impact projections. We followed the procedure described in Burke et al.30 to 
project the economic impacts from the temperature increase. GDP per capita 
in country i at year t is η δ= + +−G G T(1 ( ))i t i t i t i t, , 1 , , , where ηi t,  is the growth 
rate coming from the data in which no climate change occurs and δ T( )i t,  is a 
response function of the temperature increase at year t. The projected warming 
effect is adjusted by the baseline temperature effect30. When a BHM rich/poor 
model is applied, we specified the impact function recursively. As a number of 
countries transition from poor to rich within the course of a given century-long 
simulation, for each year simulated, if a country is ‘rich’ the rich-country impact 
function is applied and if it is ‘poor’ the poor-country impact function is applied. 

(Supplementary Information gives more details about the application of the 
alternative climate impact functions).

The CSCC. The difference in GDP per capita, including the temperature change 
impacts, between the scenario with and without pulse, provided the yearly 
compound of the CSCC until 2100 (Supplementary Fig. 12). After 2100, the 
compound was kept constant at its value in 2100 until 2200 (or set to zero  
(the sensitivity analysis is given in Supplementary Table 6)). The CSCC is the net 
present value of the yearly compound multiplied by the population projection.

Discounting. CSCCs were calculated using both exogenous and endogenous9 
discounting. For conventional exogenous discounting, two discount rates were 
used, 3 and 5%. the results under endogenous discounting were calculated using 
two rates of pure time preference (ρ =  1, 2%) and two values of elasticity of 
marginal utility of consumption (μ =  0.7, 1.5) for four endogenous discounting 
parameterizations.

Reference scenarios. Recent work26 calculated the forcing paths associated with 
SSPs by five marker models. For each SSP, we considered the RCP forcing scenario 
with the minimum Euclidian distance between the SSP as a reference scenario 
(Supplementary Fig. 13 and Supplementary Table 4).

Uncertainty. The uncertainty analysis used a full ensemble of carbon and 
climate model combinations to represent climate uncertainty (210–345 model 
combinations, varying according to the scenarios). Damage function uncertainty 
was analysed via bootstrapping (1,000 sets of parameter values). The combined 
uncertainty was obtained by convolution. At the end, a Bayesian bootstrap 
resampling analysis was conducted to provide the estimates of the median and  
the quantiles, along with their confidence interval.

Lorenz curves and Gini coefficients. Lorenz curves were generated using the 
classical approach38. The Gini coefficients were generated using the method of 
Raffinetti et al.39, which developed a coherent approach to incorporating negative 
income into the measurement of inequality that adhered to the principle that 0 
designates perfect equality and 1 maximum inequality.

Code availability. All of the scripts used to calculate the CSCCs and GSCC are 
available at https://github.com/country-level-scc/cscc-paper-2018.

Methods. Methods, including statements of data availability and any associated 
accession codes and references, are available at https://doi.org/10.1038/s41558-018-
0282-y.

Data availability
The database of the CSCCs with uncertainty bounds under all scenarios, model 
specifications and discounting schemes is available as a part of the Supplementary 
Information and via https://country-level-scc.github.io/.
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